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In order to enumerate both the HGS on Galois extensions and the

SB we study

regular subgroups of the holomorph

of a group G

Corollary (Greither-Pareigis (1987) and Byott (1996))

L/K Galois with group Γ. For any group G with |G | = |Γ|,

e(Γ,G ) =
|Aut(Γ)|
|Aut(G )|

e ′(Γ,G ).

e(Γ,G ) := |{Hopf-Galois structures on L/K of type G}|;
e ′(Γ,G ) := |{regular subgroups of Hol(G ) isomorphic to Γ}|.
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SB we study

regular subgroups of the holomorph

of a group G

Guarnieri, Vendramin 2017

G = (G , ·) group. The following are equivalent:

1 A regular subgroup N ≤ Hol(G )

2 A group operation ◦ on G st (G , ·, ◦) is a skew brace,

for g , h, k ∈ G

(gh) ◦ k = (g ◦ k)k−1(h ◦ k)

and (G , ◦) ' N
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G = (G , ·) group. The following are equivalent:

1 A regular subgroup N ≤ Hol(G )

2 A group operation ◦ on G st (G , ·, ◦) is a SB, (G , ◦) ' N

Byott (GV17)

G = (G , ·) group. There is a bijective correspondence between

- isomorphism classes of skew braces (G , ·, ◦)
- classes of regular subgroups of Hol(G ) under conjugation by

elements of Aut(G ).
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Introduction

In order to enumerate both the HGS on Galois extensions and the

SB we study

Gamma Functions

on a group G

HGS

e(Γ,G ) =
|Aut(Γ)|
|Aut(G )|

e ′(Γ,G ),

e ′(Γ,G ) = |{γ GF on G : (G , ◦) ' Γ}|

SB

(G , ·); there is a bijective correspondence between

- isomorphism classes of skew braces (G , ·, ◦)
- classes of gamma functions under "conjugation" by elements

of Aut(G ): γα(g) = α−1γ(gα−1

)α
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What we got and how

Groups of order p2q

Groups of order p2q and their automorphism groups

Type Conditions G Aut(G )

1 Cp2 × Cq Cp(p−1) × Cq−1
2 p | q − 1 Cq op Cp2 Cp × Hol(Cq)
3 p2 | q − 1 Cq o1 Cp2 Hol(Cq)
4 q | p − 1 Cp2 o Cq Hol(Cp2)

5 Cp × Cp × Cq GL(2, p)× Cq−1
6 q | p − 1 Cp × (Cp o Cq) Cp−1 × Hol(Cp)
7 q | p − 1 (Cp × Cp) oS Cq Hol(Cp × Cp)
8 3 < q | p − 1 (Cp × Cp) oD0 Cq Hol(Cp)× Hol(Cp)
9 2 < q | p − 1 (Cp × Cp) oD1 Cq (Hol(Cp)× Hol(Cp)) o C2
10 2 < q | p + 1 (Cp × Cp) oC Cq (Cp × Cp) o (Cp2−1 o C2)
11 p | q − 1 (Cq o Cp)× Cp Hol(Cp)× Hol(Cq)



Hopf Galois Structures and Skew Braces

What we got and how

Tools

L/K Galois of order p2q, p > 2 and q distinct primes,

Γ = Gal(L/K ). G group of order p2q.

For q - p − 1, the numbers e ′(Γ,G ) are:

Γ
G

1 2 3

1 p 2pq 2q
2 p(p − 1) 2p(pq − 2q + 1) 2q(p − 1)
3 p2(p − 1) 2p2q(p − 1) 2(p2q − pq − q + 1)

Γ
G

5 11

5 p2 2pq
11 p2(p2 − 1) 2p(1 + qp2 − 2q)
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Tools

First approach:

Theorem (Realizability)

Let G be a group of order p2q and γ a GF on G . If p > 2, G and

(G , ◦) have isomorphic Sylow p-subgroups.

- there always exists a Sylow p-subgroup H which is

γ(H)-invariant;

- this corresponds to have (H, ◦) isomorphic to a regular
subgroup of Hol(H);

CS19 : H cyclic (p > 2) ⇒ all regular subgrps of Hol(H) are cyclic;
FCC12 : H abelian of rank m with m < p − 1, or m = 2 and p = 3 ⇒

all the abelian subgrps of Hol(H) are isomorphic to H.

If Γ, G of order p2q, p > 2, have non isomorphic Sylow

p-subgroups,
e(Γ,G ) = e ′(Γ,G ) = 0.
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Lemma (Morphisms)
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is γ(A)-invariant. Any two of the following conditions imply the

third one:

- γ([A, γ(A)]) = {1}. ([x , γ(y)] = x−1xγ(y), x , y ∈ A)

- γ : A→ Aut(G ) is a morphism.

- γ satis�es the GFE.



Hopf Galois Structures and Skew Braces

What we got and how

Tools

Second approach:

Let G be a group, A ≤ G , and γ : A → Aut(G ) a function. γ is a

relative gamma function (RGF) on A if it satis�es the GFE and A is

γ(A)-invariant.

Lemma (Morphisms)

G �nite group, A ≤ G and γ : A→ Aut(G ) a function such that A
is γ(A)-invariant. Any two of the following conditions imply the

third one:

- γ([A, γ(A)]) = {1}. ([x , γ(y)] = x−1xγ(y), x , y ∈ A)

- γ : A→ Aut(G ) is a morphism.

- γ satis�es the GFE.



Hopf Galois Structures and Skew Braces

What we got and how

Tools

Third approach:

Proposition (Lifting and restriction)

G �nite group, A,B ≤ G such that G = AB .

γ GF on G and B ≤ ker(γ) ⇒ γ(ab) = γ(aγ(b)
−1

)γ(b) = γ(a)

⇒ γ(G ) = γ(A).

If A is γ(A)-invariant, then γ|A : A→ Aut(G ) is a RGF on A
and ker(γ) is invariant under {γ′(a)ι(a) : a ∈ A} ≤ Aut(G ).

If γ′ : A→ Aut(G ) is a RGF such that
1 γ′(A ∩ B) ≡ 1,
2 B is invariant under {γ′(a)ι(a) : a ∈ A}.

Then γ(ab) = γ′(a) is a GF on G , and ker(γ) = ker(γ′)B .

Example: p | q − 1, G of type 1, B q-Sylow. Necessarily
B ≤ ker(γ); moreover A, the p-Sylow, is characteristic ⇒ γ ↔ γ|A
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Fourth approach:

Proposition (RGF on cyclic subgroups)

G �nite group, A = 〈a〉 a cyclic subgroup of G of order pn (p odd).

Let η ∈ Aut(G ). The following are equivalent.

1 There is a RGF γ : A→ Aut(G ) such that γ(a) = η.
2 A is η-invariant, and

ord(η) | pn.
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Fourth approach:

Proposition (RGF on cyclic subgroups)

G �nite group, A = 〈a〉 a cyclic subgroup of G of order pn (p odd).

Let η ∈ Aut(G ). The following are equivalent.

1 There is a RGF γ : A→ Aut(G ) such that γ(a) = η.
2 A is η-invariant, and

ord(η) | pn.

Example: p | q−1, G of type 1, B q-Sylow. Necessarily B ≤ ker(γ);
moreover A, the p-Sylow, is characteristic ⇒ γ ↔ γ|A;

γ|A : A→ Aut(G ) = Cp(p−1) × Cq−1

|GF| = |elements of order | p2 in Aut(G )| =

{
p2 if p || q − 1

p3 if p2 | q − 1

end tabs
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For q - p − 1, the numbers e ′(Γ,G ) are:

Γ
G

1 2 3

1 p 2pq 2q
2 p(p − 1) 2p(pq − 2q + 1) 2q(p − 1)
3 p2(p − 1) 2p2q(p − 1) 2(p2q − pq − q + 1)

Γ
G

5 11

5 p2 2pq
11 p2(p2 − 1) 2p(1 + qp2 − 2q)

a	1 ◦ b ◦ a = a−γ(a)
−1γ(b)γ(a)bγ(a)a
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Fifth approach:

Duality: ρ(G )inv = λ(G ), where inv : x → x−1,

the GF associated to the RRR ρ(G ) is γ(x) = 1

the GF associated to the LRR λ(G ) is γ(x) = ι(x−1):

y ι(x
−1)ρ(x) = xy = yλ(x),

More general:

If N ≤ Hol(G ) is a regular subgroup corresponding to γ, then N inv

is another regular subgroup of Hol(G ), which corresponds to

γ̃(x) = γ(x−1)ι(x−1).
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