Hopf-Galois Structures and Skew Braces of order p^2q

Elena Campedel

Joint w. Andrea Caranti & Ilaria Del Corso

Omaha (online) June 2, 2022

The goal and the method

Goal

Enumerate the HGS on Galois extensions of order p^2q , and the skew braces of size p^2q (p, q distinct primes)

Goal

Enumerate the HGS on Galois extensions of order p^2q , and the skew braces of size p^2q (p, q distinct primes)

Note also:

- [Koh07] T. Kohl, Groups of order 4p, twisted wreath products and Hopf-Galois theory, J. Algebra 314 (2007)
- [Cre21] T. Crespo, Hopf Galois structures on field extensions of degree twice an odd prime square and their associated skew left braces, J. Algebra 565 (2021), 282-308.
- [AB20a] E. Acri and M. Bonatto, Skew braces of size p²q l: abelian type, arXiv e-prints, https://arxiv.org/abs/2004.04291 (2020).
- [AB20b] E. Acri and M. Bonatto, Skew braces of size p²q II: non-abelian type, J. Algebra Appl. 21, No.3 (2020).

In order to enumerate both the HGS on Galois extensions and the SB we study

regular subgroups of the holomorph of a group G

In order to enumerate both the HGS on Galois extensions and the SB we study

regular subgroups of the holomorph of a group G

Corollary (Greither-Pareigis (1987) and Byott (1996))

L/K Galois with group Γ . For any group G with $|G| = |\Gamma|$,

$$e(\Gamma, G) = \frac{|\operatorname{Aut}(\Gamma)|}{|\operatorname{Aut}(G)|} e'(\Gamma, G).$$

 $e(\Gamma, G) := |\{\text{Hopf-Galois structures on } L/K \text{ of type } G\}|;$ $e'(\Gamma, G) := |\{\text{regular subgroups of Hol}(G) \text{ isomorphic to } \Gamma\}|.$

In order to enumerate both the HGS on Galois extensions and the SB we study

regular subgroups of the holomorph of a group G

Guarnieri, Vendramin 2017

 $G = (G, \cdot)$ group. The following are equivalent:

- A regular subgroup $N \leq Hol(G)$
- ② A group operation on G st (G, ·, ○) is a skew brace, for g, h, k ∈ G

$$(gh) \circ k = (g \circ k)k^{-1}(h \circ k)$$

and $(G,\circ)\simeq N$

In order to enumerate both the HGS on Galois extensions and the SB we study

regular subgroups of the holomorph of a group G

Guarnieri, Vendramin 2017

 $G = (G, \cdot)$ group. The following are equivalent:

- A regular subgroup $N \leq Hol(G)$
- 2 A group operation \circ on G st (G, \cdot, \circ) is a SB, $(G, \circ) \simeq N$

Byott (GV17)

 ${\it G}=({\it G},\cdot)$ group. There is a bijective correspondence between

- isomorphism classes of skew braces (G, \cdot, \circ)
- classes of regular subgroups of Hol(G) under conjugation by elements of Aut(G).

In order to enumerate both the HGS on Galois extensions and the SB we study

regular subgroups of the holomorph of a group G

Caranti, Dalla Volta 2018

 $G = (G, \cdot)$ group. The following are equivalent:

- A regular subgroup $N \leq Hol(G)$
- 2 A group operation \circ on G st (G, \cdot, \circ) is a SB, $(G, \circ) \simeq N$
- **3** A map $\gamma: G \to \operatorname{Aut}(G)$ such that

$$\gamma(g^{\gamma(h)} \cdot h) = \gamma(g)\gamma(h)$$
 (GFE)

 $\gamma \text{ GF on } G \longrightarrow -N = \{\gamma(g)\rho(g) : g \in G\}$ - " \circ " given by $g \circ h = g^{\gamma(h)}h$

In order to enumerate both the HGS on Galois extensions and the SB we study

regular subgroups of the holomorph of a group G

Caranti, Dalla Volta 2018

 $G = (G, \cdot)$ group. The following are equivalent:

- A regular subgroup $N \leq Hol(G)$
- 2 A group operation \circ on G st (G, \cdot, \circ) is a SB, $(G, \circ) \simeq N$
- **3** A map $\gamma: G \rightarrow Aut(G)$ such that

$$\gamma(g^{\gamma(h)} \cdot h) = \gamma(g)\gamma(h)$$
 (GFE)

$$\gamma \text{ GF on } G \longrightarrow -N = \{\gamma(g)\rho(g) : g \in G\}$$

- " \circ" given by $g \circ h = g^{\gamma(h)}h$

In order to enumerate both the HGS on Galois extensions and the SB we study $% \left({{{\rm{S}}} {\rm{B}}} \right)$

Gamma Functions on a group G

In order to enumerate both the HGS on Galois extensions and the SB we study

Gamma Functions on a group G

$e(\Gamma, G) = \frac{|\operatorname{Aut}(\Gamma)|}{|\operatorname{Aut}(G)|} e'(\Gamma, G),$ $e'(\Gamma, G) = |\{\gamma \text{ GF on } G : (G, \circ) \simeq \Gamma\}|$

SB

HGS

 (G, \cdot) ; there is a bijective correspondence between

- isomorphism classes of skew braces (G, \cdot, \circ)
- classes of gamma functions under "conjugation" by elements of Aut(G): $\gamma^{\alpha}(g) = \alpha^{-1}\gamma(g^{\alpha^{-1}})\alpha$

Hopf Galois Structures and Skew Braces

What we got and how

What we got and how

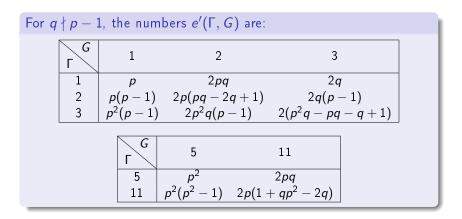
Hopf Galois Structures and Skew Braces

What we got and how Groups of order $p^2 q$

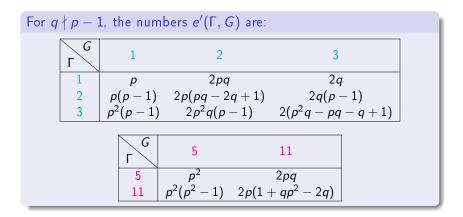
Groups of order p^2q and their automorphism groups

Туре	Conditions	G	Aut(G)
1		$\mathcal{C}_{p^2} imes \mathcal{C}_q$	$\mathcal{C}_{p(p-1)} imes \mathcal{C}_{q-1}$
2	$p \mid q-1$	$\mathcal{C}_q \rtimes_p \mathcal{C}_{p^2}$	$\mathcal{C}_p imes \operatorname{Hol}(\mathcal{C}_q)$
3	$p^2 \mid q-1$	$\mathcal{C}_q \rtimes_1 \mathcal{C}_{p^2}$	$Hol(\mathcal{C}_q)$
4	$q \mid p-1$	$\mathcal{C}_{p^2} \rtimes \mathcal{C}_q$	$Hol(\mathcal{C}_{p^2})$
5		$\mathcal{C}_p \times \mathcal{C}_p \times \mathcal{C}_q$	$GL(2,p) \times \mathcal{C}_{q-1}$
6	$q \mid p-1$	$\mathcal{C}_p imes (\mathcal{C}_p times \mathcal{C}_q)$	$\mathcal{C}_{p-1} imes Hol(\mathcal{C}_p)$
7	$q \mid p-1$	$(\mathcal{C}_p \times \mathcal{C}_p) \rtimes_{\mathcal{S}} \mathcal{C}_q$	$Hol(\mathcal{C}_p imes \mathcal{C}_p)$
8	$3 < q \mid p-1$	$(\mathcal{C}_p imes \mathcal{C}_p) \rtimes_{D0} \mathcal{C}_q$	$Hol(\mathcal{C}_p) imes Hol(\mathcal{C}_p)$
9	$2 < q \mid p-1$	$(\mathcal{C}_p imes \mathcal{C}_p) \rtimes_{D1} \mathcal{C}_q$	$(\operatorname{Hol}(\mathcal{C}_p) imes\operatorname{Hol}(\mathcal{C}_p)) times\mathcal{C}_2$
10	$2 < q \mid p+1$	$(\mathcal{C}_p imes \mathcal{C}_p) times_{\mathcal{C}} \mathcal{C}_q$	$(\mathcal{C}_{p} imes \mathcal{C}_{p}) times (\mathcal{C}_{p^{2}-1} times \mathcal{C}_{2})$
11	$p \mid q-1$	$(\mathcal{C}_{q} \rtimes \mathcal{C}_{p}) imes \mathcal{C}_{p}$	$Hol(\mathcal{C}_p) imes Hol(\mathcal{C}_q)$

> L/K Galois of order p^2q , p > 2 and q distinct primes, $\Gamma = \text{Gal}(L/K)$. G group of order p^2q .



> L/K Galois of order p^2q , p > 2 and q distinct primes, $\Gamma = \text{Gal}(L/K)$. G group of order p^2q .



First approach:

Theorem (Realizability)

Let G be a group of order p^2q and γ a GF on G. If p > 2, G and (G, \circ) have isomorphic Sylow p-subgroups.

First approach:

Theorem (Realizability)

Let G be a group of order p^2q and γ a GF on G. If p > 2, G and (G, \circ) have isomorphic Sylow p-subgroups.

- there always exists a Sylow *p*-subgroup *H* which is $\gamma(H)$ -invariant;
- this corresponds to have (H, ∘) isomorphic to a regular subgroup of Hol(H);

CS19 : H cyclic $(p > 2) \Rightarrow$ all regular subgrps of Hol(H) are cyclic;

FCC12 : *H* abelian of rank *m* with m , or <math>m = 2 and $p = 3 \Rightarrow$ all the abelian subgrps of Hol(*H*) are isomorphic to *H*.

First approach:

Theorem (Realizability)

Let G be a group of order p^2q and γ a GF on G. If p > 2, G and (G, \circ) have isomorphic Sylow p-subgroups.

- there always exists a Sylow *p*-subgroup *H* which is $\gamma(H)$ -invariant;
- this corresponds to have (H, ∘) isomorphic to a regular subgroup of Hol(H);

CS19 : *H* cyclic $(p > 2) \Rightarrow$ all regular subgrps of Hol(*H*) are cyclic; FCC12 : *H* abelian of rank *m* with m , or <math>m = 2 and $p = 3 \Rightarrow$

all the abelian subgrps of Hol(H) are isomorphic to H.

If Γ , G of order p^2q , p > 2, have non isomorphic Sylow p-subgroups,

 $e(\Gamma, G) = e'(\Gamma, G) = 0.$

Second approach:

Let G be a group, $A \leq G$, and $\gamma : A \rightarrow Aut(G)$ a function. γ is a relative gamma function (RGF) on A if it satisfies the GFE and A is $\gamma(A)$ -invariant.

Second approach:

Let G be a group, $A \leq G$, and $\gamma : A \rightarrow Aut(G)$ a function. γ is a relative gamma function (RGF) on A if it satisfies the GFE and A is $\gamma(A)$ -invariant.

Lemma (Morphisms)

G finite group, $A \leq G$ and $\gamma : A \rightarrow Aut(G)$ a function such that A is $\gamma(A)$ -invariant. Any two of the following conditions imply the third one:

- $\gamma([A, \gamma(A)]) = \{1\}. ([x, \gamma(y)] = x^{-1}x^{\gamma(y)}, x, y \in A)$
- $\gamma: A
 ightarrow {\sf Aut}({\sf G})$ is a morphism.
- γ satisfies the GFE.

Second approach:

Let G be a group, $A \leq G$, and $\gamma : A \rightarrow Aut(G)$ a function. γ is a relative gamma function (RGF) on A if it satisfies the GFE and A is $\gamma(A)$ -invariant.

Lemma (Morphisms)

G finite group, $A \leq G$ and $\gamma : A \rightarrow Aut(G)$ a function such that A is $\gamma(A)$ -invariant. Any two of the following conditions imply the third one:

- $\gamma([A, \gamma(A)]) = \{1\}. ([x, \gamma(y)] = x^{-1}x^{\gamma(y)}, x, y \in A)$
- $\gamma: A
 ightarrow {\sf Aut}(G)$ is a morphism.
- γ satisfies the GFE.

Third approach:

Proposition (Lifting and restriction)

G finite group, $A, B \leq G$ such that G = AB.

• γ GF on G and $B \leq \ker(\gamma) \Rightarrow \gamma(ab) = \gamma(a^{\gamma(b)^{-1}})\gamma(b) = \gamma(a)$

$$\Rightarrow \gamma(G) = \gamma(A).$$

If A is γ(A)-invariant, then γ_{|A}: A → Aut(G) is a RGF on A and ker(γ) is invariant under {γ'(a)ι(a) : a ∈ A} ≤ Aut(G).
If γ': A → Aut(G) is a RGF such that
γ'(A ∩ B) ≡ 1.

2 B is invariant under $\{\gamma'(a)\iota(a): a \in A\}$.

Then $\gamma(ab) = \gamma'(a)$ is a GF on G, and $\ker(\gamma) = \ker(\gamma')B$.

Example: $p \mid q - 1$, G of type 1, B q-Sylow. Necessarily $B \leq \ker(\gamma)$; moreover A, the p-Sylow, is characteristic $\Rightarrow \gamma \leftrightarrow \gamma_{\mid A}$

Third approach:

Proposition (Lifting and restriction)

G finite group, $A, B \leq G$ such that G = AB.

• γ GF on G and $B \leq \ker(\gamma) \Rightarrow \gamma(ab) = \gamma(a^{\gamma(b)^{-1}})\gamma(b) = \gamma(a)$

$$\Rightarrow \gamma(G) = \gamma(A).$$

If A is $\gamma(A)$ -invariant, then $\gamma_{|A} : A \to Aut(G)$ is a RGF on A and ker (γ) is invariant under $\{\gamma'(a)\iota(a) : a \in A\} \leq Aut(G)$. If $\gamma' : A \to Aut(G)$ is a RGF such that $\gamma'(A \cap B) \equiv 1$, B is invariant under $\{\gamma'(a)\iota(a) : a \in A\}$. Then $\gamma(ab) = \gamma'(a)$ is a GF on G, and ker $(\gamma) = ker(\gamma')B$.

Example: $p \mid q - 1$, G of type 1, B q-Sylow. Necessarily $B \leq \ker(\gamma)$; moreover A, the p-Sylow, is characteristic $\Rightarrow \gamma \leftrightarrow \gamma_{\mid A}$

Fourth approach:

2

Proposition (RGF on cyclic subgroups)

G finite group, $A = \langle a \rangle$ a cyclic subgroup of G of order p^n (p odd). Let $\eta \in Aut(G)$. The following are equivalent.

- There is a RGF $\gamma : A \rightarrow Aut(G)$ such that $\gamma(a) = \eta$.
 - A is η -invariant, and
 - ord $(\eta) \mid p^n$.

Fourth approach:

Proposition (RGF on cyclic subgroups)

G finite group, $A = \langle a \rangle$ a cyclic subgroup of *G* of order p^n (p odd). Let $\eta \in Aut(G)$. The following are equivalent.

$$oldsymbol{0}$$
 There is a RGF $\gamma: \mathcal{A}
ightarrow \mathsf{Aut}(\mathcal{G})$ such that $\gamma(\mathcal{a}) = \eta_{\mathcal{A}}$

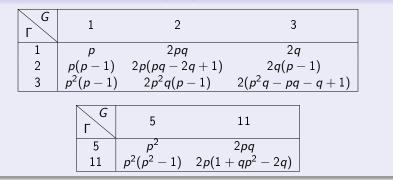
Example: $p \mid q-1$, G of type 1, B q-Sylow. Necessarily $B \leq \ker(\gamma)$; moreover A, the p-Sylow, is characteristic $\Rightarrow \gamma \leftrightarrow \gamma_{\mid A}$;

$$\gamma_{|A}: A
ightarrow \mathsf{Aut}(G) = \mathcal{C}_{p(p-1)} imes \mathcal{C}_{q-1}$$

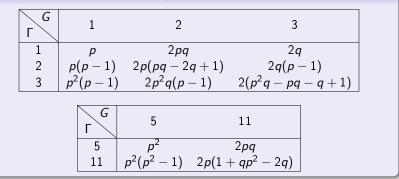
$$|\mathsf{GF}| = |\mathsf{elements} ext{ of order } | p^2 ext{ in } \mathsf{Aut}(G)| = egin{cases} p^2 ext{ if } p \mid\mid q-1 \ p^3 ext{ if } p^2 \mid q-1 \ p^3 ext{ if } p^2 \mid q-1 \end{cases}$$

2

For $q \nmid p - 1$, the numbers $e'(\Gamma, G)$ are:

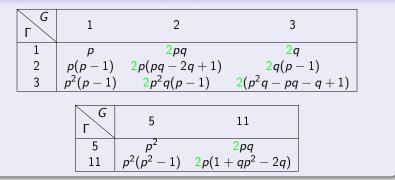


For $q \nmid p - 1$, the numbers $e'(\Gamma, G)$ are:



$$a^{\ominus 1} \circ b \circ a = a^{-\gamma(a)^{-1}\gamma(b)\gamma(a)}b^{\gamma(a)}a$$

For $q \nmid p - 1$, the numbers $e'(\Gamma, G)$ are:



Fifth approach: Duality: $\rho(G)^{inv} = \lambda(G)$, where $inv : x \to x^{-1}$,

- ullet the GF associated to the RRR ho(G) is $\gamma(x)=1$
- the GF associated to the LRR $\lambda(G)$ is $\gamma(x) = \iota(x^{-1})$:

$$y^{\iota(x^{-1})\rho(x)} = xy = y^{\lambda(x)},$$

More general:

If $N \leq Hol(G)$ is a regular subgroup corresponding to γ , then N^{inv} is another regular subgroup of Hol(G), which corresponds to

$$\widetilde{\gamma}(x) = \gamma(x^{-1})\iota(x^{-1}).$$

Fifth approach:

Duality: $\rho(G)^{inv} = \lambda(G)$, where $inv : x \to x^{-1}$,

- the GF associated to the RRR ho(G) is $\gamma(x)=1$
- the GF associated to the LRR $\lambda(G)$ is $\gamma(x) = \iota(x^{-1})$:

$$y^{\iota(x^{-1})\rho(x)} = xy = y^{\lambda(x)},$$

More general:

If $N \leq Hol(G)$ is a regular subgroup corresponding to γ , then N^{inv} is another regular subgroup of Hol(G), which corresponds to

$$\widetilde{\gamma}(x) = \gamma(x^{-1})\iota(x^{-1}).$$

Fifth approach: Duality: $ho(G)^{inv} = \lambda(G)$, where $inv : x \to x^{-1}$,

- the GF associated to the RRR ho(G) is $\gamma(x)=1$
- the GF associated to the LRR $\lambda(G)$ is $\gamma(x) = \iota(x^{-1})$:

$$y^{\iota(x^{-1})\rho(x)} = xy = y^{\lambda(x)},$$

More general:

If $N \leq Hol(G)$ is a regular subgroup corresponding to γ , then $N^{in\nu}$ is another regular subgroup of Hol(G), which corresponds to

$$\widetilde{\gamma}(x) = \gamma(x^{-1})\iota(x^{-1}).$$

(i) For $q \nmid p - 1$:

Γ	1	2	3
1	p	2p(p-1)	2p(p-1)
2	pq	2p(pq - 2q + 1)	2pq(p - 1)
3	pq	2pq(p - 1)	$2(p^2q - pq - q + 1)$

Г	5	11
5	p^2	$2p(p^2 - 1)$ $2p(1 + qp^2 - 2q)$
11	p^2q	$2p(1+qp^2-2q)$

(ii) For $q \nmid p - 1$ and $q \mid p + 1$:

Г	5	10
5 10	p^2 p^2	$\begin{array}{c} p(p-1)(q-1) \\ 2+2p^2(q-3)-p^3+p^4 \end{array}$

(iii) For $q \mid p - 1$:

Г	1	4
1	p	2p(q-1) $2(p^2q - 2p^2 + 1)$
- 4	p^2	$2(p^2q - 2p^2 + 1)$

If q = 2,

Г	5	6	7
5	p^2	2p(p+1)	p(3p + 1)
6	p^2	2p(p + 1)	p(3p + 1)
7	p^2	$2p^2(p+1)$	2 + p(p+1)(2p-1)

If q = 3,

Г	5	6	7	9
5	p^2	4p(p + 1)	2p(3p + 1)	4p(p + 1)
6	p	2p(p + 3)	4p(p + 1)	p(3p + 5)
7	p^2	$2p^2(p+1)^2$	$2 + p^2(2p^2 + 3p + 2)$	$p(p+1)^{3}$
9	$p^2(2p-1)$	$4p(p^2 + 1)$	$2(2p^3 + 3p^2 - 2p + 1)$	$2+2p+p^3(p+3)$

If q > 3,

	5	6
5	p^2	2p(p+1)(q-1)
6	p	2p(p + 2q - 3)
7	p^2	$2p^{2}(p+1)(pq-2p+1)$
$8, G_2$	p^3	$4p(p^2 + pq - 3p + 1)$
8, $G_k \not\simeq G_2$	p^2	$4p(p^2 + pq - 3p + 1)$
9	p^2	$4p(p^2 + pq - 3p + 1)$

Γ G	7	9
5	p(3p+1)(q-1)	2p(p+1)(q-1)
6	$4(p^2 + pq - 2p)$	p(4q + 3p - 7)
7	$2 + p^2(2p^2 + pq + 2q - 4)$	$p(p+1)(p^2(2q-5)+2p+1)$
$8, G_2$	$2p(p^2q - 4p + pq + 2)$	$p(p^3 + 3p^2 - 14p + 4pq - 6)$
8, $G_k \not\simeq G_2$	$4p(2p^2 - 5p + pq + 2)$	$p(p^3 + 5p^2 - 18p + 4pq + 8)$
9	$2(4p^3 - 9p^2 + 2p^2q + 2p + 1)$	$2 + 4p + p^2(p^2 + 5p + 4q - 16)$

	68 Г	$G \not\simeq G_{\pm 2}$	$G \simeq G_{\pm 2}, q > 5$	$G \simeq G_2, q = 5$
Г	5	4p(p+1)(q-1)	4p(p+1)(q-1)	16p(p + 1)
	6	8p(q + p - 2)	8p(q + p - 2)	8p(p + 3)
	7	$4p^2(p+1)(pq-3p+2)$	$4p^2(p+1)(pq-3p+2)$	$8p^2(p+1)^2$
	8	Table 2	Table 1	$4(1 + p + 3p^2(p + 1))$
L	9	$8p(2p^2 + pq - 5p + 2))$	$4p(3p^2 + 2pq - 8p + 3)$	$16p(2p^3 - 2p + p + 1)$

Table 1: G and I of	type 8, $G \simeq G_k$ for $\kappa = \pm 2$,
Г	if $q > 7$:
G_2	$2(1 + 5p + 4p^2q - 17p^2 + 7p^3)$
$G_3, G_{\frac{3}{2}}$	$2(7p + 4p^2q - 18p^2 + 7p^3)$
G_2 2	$2(1 + 6p + 4p^2q - 19p^2 + 8p^3)$
$G_{s} \not\simeq G_{2}, G_{3}, G_{\frac{3}{2}}, G_{-2}$	$8(2p + p^2q - 5p^2 + 2p^3)$
Г	if $q = 7$:
G_2	$2(1 + 5p + 11p^2 + 7p^3)$
G_3	$2(1 + 4p + 13p^2 + 6p^3)$

Table 1: G and Γ of type 8, $G \simeq G_k$ for $k = \pm 2$.

Table 2: G and Γ of type 8, $G \simeq G_k \not\simeq G_{\pm 2}$

Г	if either k or k^{-1} is a solution of $x^2 - x - 1 = 0$:
G_k, G_{1-k}	$2(1 + 5p + 4p^2q - 17p^2 + 7p^3)$
G_{1+k}	$4(3p + 2p^2q - 8p^2 + 3p^3)$
$G_s \not\simeq G_k, G_{1+k}, G_{1-k}$	$8(2p + p^2q - 5p^2 + 2p^3)$
Г	if k and k^{-1} are the solutions of $x^2 + x + 1 = 0$:
G _k	$2(1 + 6p + 4p^2q - 19p^2 + 8p^3)$
$G_{1-k}, G_{1-k^{-1}}$	$2(7p + 4p^2q - 18p^2 + 7p^3)$
G_{1+k}	$2(1 + 4p + 4p^2q - 15p^2 + 6p^3)$
$G_{s} \not\simeq G_{k}, G_{1+k}, G_{1-k}, G_{1-k^{-1}}$	$8(2p + p^2q - 5p^2 + 2p^3)$
Г	if k and k^{-1} are the solutions of $x^2 - x + 1 = 0$:
G_{-k}	$2(1 + 6p + 4p^2q - 19p^2 + 8p^3)$
$G_{1+k}, G_{1+k^{-1}}$	$2(7p + 4p^2q - 18p^2 + 7p^3)$
G_{1-k}	$2(1 + 4p + 4p^2q - 15p^2 + 6p^3)$
$G_s \not\simeq G_{-k}, G_{1-k}, G_{1+k}, G_{1+k^{-1}}$	$8(2p + p^2q - 5p^2 + 2p^3)$
Г	if k and k^{-1} are the solutions of $x^2 + 1 = 0$:
G_k	$4(1 + 2p + 2p^2q - 9p^2 + 4p^3)$
G_{1+k}, G_{1-k}	$4(3p + 2p^2q - 8p^2 + 3p^3)$
$G_s \not\simeq G_k, G_{1+k}, G_{1-k}$	$8(2p + p^2q - 5p^2 + 2p^3)$
Г	if $k^2 \neq \pm k \pm 1, -1$:
G_k, G_{-k}	$2(1 + 6p + 4p^2q - 19p^2 + 8p^3)$
$G_{1+k}, G_{1+k^{-1}}, G_{1-k}, G_{1-k^{-1}}$	$2(7p + 4p^2q - 18p^2 + 7p^3)$
$G_s \not\simeq G_{\pm k}, G_{1\pm k}, G_{1\pm k^{-1}}$	$8(2p + p^2q - 5p^2 + 2p^3)$

Thank you for the attention!